Nilaideterminan dari matriks A di atas adalah . (Skor = 20) A. -2 B. -12 C. 2 D. 10 2. Perhatikan determinan matriks B di bawah ini : B = Jika nilai determinan matriks B adalah 4, maka nilai x adalah . (Skor = 20) A. 4 B. 3 C. 2 D. 1 3. Terdapat dua buah matriks, yaitu : matriks A dan B seperti dibawah ini : A = B = Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videountuk soal di atas kita diberikan invers dari matriks A adalah 4 2/3 dan 1 kita diminta untuk mencari matriks A maka disini kita akan menggunakan rumus matriks A = matriks A invers dibagi dengan determinannya maka pertama kita cari dulu determinannya determinan dari matriks A rumusnya adalah misalkan dengan matriks A = a b c dan d maka determinan nya adalah a dikali B dikurang C dikali b, maka dari sana kita akan dapat 4 * 1 dikurang 3 * 2 maka 4 dikurang 6 hasilnya adalah min 2 maka kita masukkan ke dalam rumus matriks A disini adalah matriks A invers 1/4 2/3 dan 1 dibagi dengan determinan yaitu min 2 kita akan dapat matriks 4 2 3 dan 1 kita X dengan 1 per 2 maka setelah kita kalikan kita akan dapat min 2 min 1 min 3 per 2 dan 1 per 2 Kemudian kita lihat ke dalam rumus invers matriks di mana rumus invers matriks adalah 1 per determinan dikali dengan Hasil perubahan dari matriks A matriks yaitu a b c d akan berubah menjadi d a b dan c. Maka di sini kita akan mengubah bentuk matriks nya min 2 dan 1/2 kita tukar kita akan dapat min 1 atau 2 kemudian min 2 sedangkan min 1 dan Min 3/2 kita kali dengan negatif Maka hasilnya adalah 1 dan 3 per 2 maka ini adalah jawaban untuk soal di atas sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul 55Xx4o.
  • 5ge8vcjspx.pages.dev/237
  • 5ge8vcjspx.pages.dev/101
  • 5ge8vcjspx.pages.dev/244
  • 5ge8vcjspx.pages.dev/366
  • 5ge8vcjspx.pages.dev/319
  • 5ge8vcjspx.pages.dev/377
  • 5ge8vcjspx.pages.dev/250
  • 5ge8vcjspx.pages.dev/205
  • 5ge8vcjspx.pages.dev/19
  • invers matriks a 2 1 4 3 adalah